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Abstract: In this paper, based on Jumarie’s modified Riemann-Liouville (R-L) fractional calculus, we find the 
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I.   INTRODUCTION 

Fractional calculus with derivatives and integrals of any real or complex order has its origin in the work of Euler, and even 

earlier in the work of Leibniz. Shortly after being introduced, the new theory turned out to be very attractive to many famous 

mathematicians and scientists, for example, Laplace, Riemann, Liouville, Abel, and Fourier. Fractional calculus has 

important applications in many scientific fields such as physics, mechanics, biology, engineering, viscoelasticity, dynamics, 

control theory, economics, and so on [1-11]. 

However, the definition of fractional derivative is not unique. Commonly used definitions include Riemann-Liouville (R-

L) fractional derivative, Caputo fractional derivative, Grunwald-Letnikov (G-L) fractional derivative, Jumarie’s modified 

R-L fractional derivative [12-16]. Since Jumarie type of R-L fractional derivative helps to avoid non-zero fractional 

derivative of constant function, it is easier to use this definition to connect fractional calculus with classical calculus.  

In this paper, based on Jumarie type of R-L fractional calculus, we find the solution of the following improper 𝛼-fractional 

integral: 

                                                                             ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [(
1

Γ(𝛼+1)
𝑥𝛼)

⨂ −(
1

Γ(𝛼+1)
𝑥𝛼)

],                                       (1) 

where 0 < 𝛼 ≤ 1 . Change of variable for fractional calculus, integration by parts for fractional calculus, fractional 

L’Hospital’s rule, and a new multiplication of fractional analytic functions play important roles in this paper. In fact, our 

result is a generalization of traditional calculus result.                                                                          

II.   DEFINITIONS AND PROPERTIES 

Firstly, we introduce the fractional calculus used in this paper. 

Definition 2.1 ([17]): Let 0 < 𝛼 ≤ 1, and 𝑥0  be a real number. The Jumarie’s modified Riemann-Liouville (R-L) 𝛼-

fractional derivative is defined by 
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                                                                         ( 𝐷𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(1−𝛼)

𝑑

𝑑𝑥
∫

𝑓(𝑡)−𝑓(𝑥0)

(𝑥−𝑡)𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                      (2) 

And the Jumarie type of Riemann-Liouville 𝛼-fractional integral is defined by 

                                                                           ( 𝐼𝑥0 𝑥
𝛼)[𝑓(𝑥)] =

1

Γ(𝛼)
∫

𝑓(𝑡)

(𝑥−𝑡)1−𝛼 𝑑𝑡
𝑥

𝑥0
 ,                                               (3) 

where Γ( ) is the gamma function.  

In the following, some properties of Jumarie type of fractional derivative are introduced. 

Proposition 2.2 ([18]):  If  𝛼, 𝛽, 𝑥0, 𝐶 are real numbers and 𝛽 ≥ 𝛼 > 0, then 

                                                                           ( 𝐷𝑥0 𝑥
𝛼)[(𝑥 − 𝑥0)𝛽] =

Γ(𝛽+1)

Γ(𝛽−𝛼+1)
(𝑥 − 𝑥0)𝛽−𝛼,                                 (4) 

and 

                                                                                               ( 𝐷𝑥0 𝑥
𝛼)[𝐶] = 0.                                                             (5) 

Next, we introduce the definition of fractional analytic function. 

Definition 2.3 ([19]): If 𝑥, 𝑥0, and 𝑎𝑘 are real numbers for all 𝑘, 𝑥0 ∈ (𝑎, 𝑏), and 0 < 𝛼 ≤ 1. If the function 𝑓𝛼: [𝑎, 𝑏] → 𝑅 

can be expressed as an 𝛼-fractional power series, i.e., 𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0  on some open interval containing 

𝑥0, then we say that 𝑓𝛼(𝑥𝛼) is 𝛼-fractional analytic at 𝑥0. Furthermore, if 𝑓𝛼: [𝑎, 𝑏] → 𝑅 is continuous on closed interval 

[𝑎, 𝑏] and it is 𝛼-fractional analytic at every point in open interval (𝑎, 𝑏), then 𝑓𝛼 is called an 𝛼-fractional analytic function 

on [𝑎, 𝑏]. 

In the following, a new multiplication of fractional analytic functions is introduced.  

Definition 2.4 ([20]): If  0 < 𝛼 ≤ 1, and 𝑥0 is a real number. Suppose that 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic at 

 𝑥 = 𝑥0 , 

                                                                                  𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ,                                          (6) 

                                                                                 𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 .∞

𝑘=0                                           (7) 

Then  

                                                                     𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)  

                                                               = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0 ⊗ ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼∞

𝑘=0   

                                                               = ∑
1

Γ(𝑘𝛼+1)
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (𝑥 − 𝑥0)𝑘𝛼 .                                   (8) 

In other words, 

                                                       𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) 

                                                 = ∑
𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0 ⊗ ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0   

                                                 = ∑
1

𝑘!
(∑ (

𝑘
𝑚

) 𝑎𝑘−𝑚𝑏𝑚
𝑘
𝑚=0 )∞

𝑘=0 (
1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

 .                                      (9) 

Definition 2.5 ([21]): If 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic at 𝑥 = 𝑥0 , 

                                             𝑓𝛼(𝑥𝛼) = ∑
𝑎𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑎𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘
∞
𝑘=0

∞
𝑘=0  ,                   (10) 

                                            𝑔𝛼(𝑥𝛼) = ∑
𝑏𝑘

Γ(𝑘𝛼+1)
(𝑥 − 𝑥0)𝑘𝛼 = ∑

𝑏𝑘

𝑘!
(

1

Γ(𝛼+1)
(𝑥 − 𝑥0)𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                     (11) 

The compositions of 𝑓𝛼(𝑥𝛼) and 𝑔𝛼(𝑥𝛼) are defined by 

https://www.researchpublish.com/
https://www.researchpublish.com/


ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 11, Issue 1, pp: (22-27), Month: January - March 2023, Available at: www.researchpublish.com 
 

Page | 24  
Research Publish Journals 

                                                        (𝑓𝛼 ∘ 𝑔𝛼)(𝑥𝛼) = 𝑓𝛼(𝑔𝛼(𝑥𝛼)) = ∑
𝑎𝑘

𝑘!
(𝑔𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 ,                                 (12) 

and 

                                                        (𝑔𝛼 ∘ 𝑓𝛼)(𝑥𝛼) = 𝑔𝛼(𝑓𝛼(𝑥𝛼)) = ∑
𝑏𝑘

𝑘!
(𝑓𝛼(𝑥𝛼))

⨂𝑘∞
𝑘=0 .                                  (13) 

Definition 2.6 ([22]): Let 0 < α ≤ 1, and 𝑥 be a real number. The 𝛼-fractional exponential function is defined by 

                                                                    𝐸𝛼(𝑥𝛼) = ∑
𝑥𝑘𝛼

Γ(𝑘𝛼+1)
= ∑

1

𝑘!
(

1

Γ(𝛼+1)
𝑥𝛼)

⨂𝑘

.∞
𝑘=0

∞
𝑘=0                              (14) 

 

Definition 2.7: Let 0 < 𝛼 ≤ 1, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼) be two 𝛼-fractional analytic functions. Then (𝑓𝛼(𝑥𝛼))
⊗𝑛

= 𝑓𝛼(𝑥𝛼) ⊗

⋯ ⊗ 𝑓𝛼(𝑥𝛼) is called the 𝑛-th power of 𝑓𝛼(𝑥𝛼). On the other hand, if 𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼) = 1, then 𝑔𝛼(𝑥𝛼) is called the ⊗

 reciprocal of 𝑓𝛼(𝑥𝛼), and is denoted by (𝑓𝛼(𝑥𝛼))
⊗−1

. 

Definition 2.8 ([23]): Let 0 < 𝛼 ≤ 1. If 𝑢𝛼(𝑥𝛼), 𝑤𝛼(𝑥𝛼) are two 𝛼-fractional analytic functions. Then the 𝛼-fractional 

power exponential function 𝑢𝛼(𝑥𝛼)⨂𝑤𝛼(𝑥𝛼)  is defined by 

                                                                    𝑢𝛼(𝑥𝛼)⨂𝑤𝛼(𝑥𝛼) = 𝐸𝛼 (𝑤𝛼(𝑥𝛼) ⊗ 𝐿𝑛𝛼(𝑢𝛼(𝑥𝛼))).                                 (15) 

Theorem 2.9 (integration by parts for fractional calculus) ([24]): Assume that 0 < 𝛼 ≤ 1, 𝑎, 𝑏 are real numbers, and 

𝑓𝛼(𝑥𝛼),  𝑔𝛼(𝑥𝛼) are 𝛼-fractional analytic functions, then 

    ( 𝐼𝑎 𝑏
𝛼) [𝑓𝛼(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]] = [ 𝑓𝛼(𝑥𝛼) ⊗ 𝑔𝛼(𝑥𝛼)]𝑥=𝑎
𝑥=𝑏 − ( 𝐼𝑎 𝑏

𝛼) [𝑔𝛼(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]].       (16) 

Theorem 2.10 (change of variable for fractional calculus) ([25]): If  0 < 𝛼 ≤ 1,  𝑓𝛼 , 𝑢𝛼 are 𝛼-fractional analytic functions 

such that the range of  𝑢𝛼  contained in the domain of 𝑓𝛼, then 𝑓𝛼 ∘ 𝑢𝛼 is a 𝛼-fractional analytic function and 

                                                      ( 𝐼𝑎 𝑏
𝛼) [(𝑓𝛼 ∘ 𝑢𝛼)(𝑥𝛼) ⊗ ( 𝐷𝑎 𝑥

𝛼)[𝑢𝛼(𝑥𝛼)]] = ( 𝐼𝑢𝛼(𝑎𝛼) 𝑢𝛼(𝑏𝛼)
𝛼 )[𝑓𝛼(𝑢𝛼)],              (17) 

Theorem 2.11 (fractional L’Hospital’s rule) ([26]): Suppose that 0 < 𝛼 ≤ 1, 𝑐 is a real number, and 𝑓𝛼(𝑥𝛼), 𝑔𝛼(𝑥𝛼), 

[𝑔𝛼(𝑥𝛼)]⨂ −1 are 𝛼-fractional analytic functions at 𝑥 = 𝑐. If  lim
𝑥→𝑐

 𝑓𝛼(𝑥𝛼) = lim 
𝑥→𝑐

𝑔𝛼(𝑥𝛼) = 0, or lim
𝑥→𝑐

 𝑓𝛼(𝑥𝛼) = ±∞, and 

 lim 
𝑥→𝑐

𝑔𝛼(𝑥𝛼) = ±∞. Assume that  lim
𝑥→𝑐

 𝑓𝛼(𝑥𝛼)⨂[𝑔𝛼(𝑥𝛼)]⨂ −1 and lim
𝑥→𝑐

( 𝐷𝑐 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]⨂ [( 𝐷𝑐 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]]
⨂ −1

 exist, 

( 𝐷𝑐 𝑥
𝛼)[𝑔𝛼(𝑥𝛼)](𝑐) ≠ 0. Then   

                                           lim
𝑥→𝑐

𝑓𝛼(𝑥𝛼)⨂[𝑔𝛼(𝑥𝛼)]⨂ −1 = lim
𝑥→𝑐

( 𝐷𝑐 𝑥
𝛼)[𝑓𝛼(𝑥𝛼)]⨂ [( 𝐷𝑐 𝑥

𝛼)[𝑔𝛼(𝑥𝛼)]]
⨂ −1

.            (18) 

III.   MAIN RESULT 

In this section, we obtain the main result in this paper. At first, we need two lemmas. 

Lemma 3.1: Let 0 < 𝛼 ≤ 1 and 𝑛 be a non-negative integer. Then the improper 𝛼-fractional integral 

                                                                 ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑛

⊗ 𝐸𝛼(−𝑡𝛼)] = 𝑛!                                                 (19) 

Proof  If 𝑛 = 0, then 

                                                                     ( 𝐼0 +∞
𝛼 )[𝐸𝛼(−𝑡𝛼)] = −𝐸𝛼(−𝑡𝛼)|0

+∞ = 1.                                              (20) 

Furthermore, by integration by parts for fractional calculus, 

                                         ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑛

⊗ 𝐸𝛼(−𝑡𝛼)]  

                                    = ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑛

⊗ ( 𝐷0 𝑡
𝛼)[−𝐸𝛼(−𝑡𝛼)]]  

https://www.researchpublish.com/
https://www.researchpublish.com/


ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 11, Issue 1, pp: (22-27), Month: January - March 2023, Available at: www.researchpublish.com 
 

Page | 25  
Research Publish Journals 

                                    = − (
1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑛

𝐸𝛼(−𝑡𝛼)|0
+∞ + 𝑛 ∙ ( 𝐼0 +∞

𝛼 ) [(
1

Γ(𝛼+1)
𝑡𝛼)

⨂(𝑛−1)

⊗ 𝐸𝛼(−𝑡𝛼)]  

                                    = 𝑛 ∙ ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂(𝑛−1)

⊗ 𝐸𝛼(−𝑡𝛼)].  (by fractional L’Hospital’s rule)             (21) 

Therefore, by induction, we obtain the desired result.                                                         Q.e.d. 

 

Lemma 3.2: Let 0 < 𝛼 ≤ 1 and 𝑛 be a non-negative integer. Then the improper 𝛼-fractional integral  

                                                   ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [[− (
1

Γ(𝛼+1)
𝑥𝛼) ⊗ 𝐿𝑛𝛼(𝑥𝛼)]

⨂𝑛

] =
𝑛!

(𝑛+1)𝑛+1 .                                (22) 

 

Proof   Let  
1

Γ(𝛼+1)
𝑦𝛼 = −𝐿𝑛𝛼(𝑥𝛼), then  

1

Γ(𝛼+1)
𝑥𝛼 = 𝐸𝛼(−𝑦𝛼). Thus, by change of variable for fractional calculus, 

                                         ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [[− (
1

Γ(𝛼+1)
𝑥𝛼) ⊗ 𝐿𝑛𝛼(𝑥𝛼)]

⨂𝑛

]  

                                    = −( 𝐼0 +∞
𝛼 ) [[(𝐸𝛼(−𝑦𝛼)) ⊗

1

Γ(𝛼+1)
𝑦𝛼]

⨂𝑛

⊗ −𝐸𝛼(−𝑦𝛼)]  

                                    = ( 𝐼0 +∞
𝛼 ) [(𝐸𝛼(−𝑦𝛼))

⨂𝑛
⊗ (

1

Γ(𝛼+1)
𝑦𝛼)

⨂𝑛

⊗ 𝐸𝛼(−𝑦𝛼)]   

                                    = ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑦𝛼)

⨂𝑛

⊗ 𝐸𝛼(−(𝑛 + 1)𝑦𝛼)]  

                                    =
1

(𝑛+1)𝑛+1 ( 𝐼0 +∞
𝛼 ) [(

1

Γ(𝛼+1)
𝑡𝛼)

⨂𝑛

⊗ 𝐸𝛼(−𝑡𝛼)]   (let 
1

Γ(𝛼+1)
𝑡𝛼 = (𝑛 + 1)

1

Γ(𝛼+1)
𝑦𝛼  ) 

                                    =
𝑛!

(𝑛+1)𝑛+1 .    (by Lemma 3.1)        

                                                                                                                                                                    Q.e.d. 

Theorem 3.3: If  0 < 𝛼 ≤ 1, then the improper 𝛼-fractional integral 

                                                               ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [(
1

Γ(𝛼+1)
𝑥𝛼)

⨂ −(
1

Γ(𝛼+1)
𝑥𝛼)

] = ∑
1

𝑛𝑛
∞
𝑛=1  .                                (23) 

Proof 

                                                 ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [(
1

Γ(𝛼+1)
𝑥𝛼)

⨂ −(
1

Γ(𝛼+1)
𝑥𝛼)

]  

                                           = ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [𝐸𝛼 (− (
1

Γ(𝛼+1)
𝑥𝛼) ⊗ 𝐿𝑛𝛼(𝑥𝛼))]  

                                           = ( 𝐼0
[Γ(α+1)]

1
𝛼

𝛼 ) [∑
1

𝑛!
[− (

1

Γ(𝛼+1)
𝑥𝛼) ⊗ 𝐿𝑛𝛼(𝑥𝛼)]

⨂𝑛
∞
𝑛=0 ]  

                                           = ∑
1

𝑛!
( 𝐼0

[Γ(α+1)]
1
𝛼

𝛼 ) [[− (
1

Γ(𝛼+1)
𝑥𝛼) ⊗ 𝐿𝑛𝛼(𝑥𝛼)]

⨂𝑛

]∞
𝑛=0   

                                           = ∑
1

𝑛!
∙

𝑛!

(𝑛+1)𝑛+1
∞
𝑛=0    (by Lemma 3.2) 

                                           = ∑
1

(𝑛+1)𝑛+1
∞
𝑛=0   

                                           = ∑
1

𝑛𝑛
∞
𝑛=1  .                                                                                                Q.e.d. 

https://www.researchpublish.com/
https://www.researchpublish.com/


ISSN 2348-1196 (print) 
International Journal of Computer Science and Information Technology Research  ISSN 2348-120X (online) 

Vol. 11, Issue 1, pp: (22-27), Month: January - March 2023, Available at: www.researchpublish.com 
 

Page | 26  
Research Publish Journals 

IV.   CONCLUSION 

In this paper, based on Jumarie type of R-L fractional calculus, we solve some type of improper fractional integral mainly 

using change of variable for fractional calculus, integration by parts for fractional calculus, and fractional L’Hospital’s rule. 

A new multiplication of fractional analytic functions plays an important role in this paper. In fact, our result is a 

generalization of the result in ordinary calculus. In the future, we will continue to use these methods to study the problems 

in applied mathematics and fractional differential equations. 
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